
AD-Ri46 589 FISHSPEAR: A PRIORITY QUEUE ALGORITHM (EXTENDED /
ABSTRRCT)(U) YALE UNIV NEW HAVEN CT DEPT OF COMPUTER
SCIENCE MI J FISCHER ET AL. AUG 83 YALEU/DCS/RR-333

UNCLASSIFIED N@88i4-82-K-8i54 F/G 9/2 N

mommomhhhhil

, (

Ilkk L4. - ., ,",

I

1101

" ti

J

L

114

'OPY RESOLUTION TEST CHART

.- --" . . . - o . ' .., I -

In

IE V

FISHSPEAR: A PRIORITY QUEUE ALGORITHM

(EXTENDED ABSTRACT)

Michael J. Fischer and Michael S. Paterson

YALEU/DCS/RR- 333

August, 1984

DTI

, .. OC 1 1 8

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

i84 10 15 012

SXCUpjTv CLASSIFIcATION OF TN~is PAGE rle%., DetE -td

REPORT DOCUMENTATION PAGE READ INSTRUCTONS'
• • BEFORE COMPLETrING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. RECIPIENT'S CATA&.OG NUMBER

YALEU/DCS/RR- 333 1/i 9 __

16. TITLE and Su.btitle) a. TYPE Of REPORT b PERIOD COVERED

FISHSPEAR: A PRIORITY QUEUE ALGORITHM Technical Report 4

(Extended abstract) , PERFORMING OAG. REPORT NuMBER

7. AUTHOR(s) 4. CONTRACT Of GRANT ,UMBER's.

Michael J. Fischer and Michael S. Paterson ONR: N00014-82-K-0154 and

NSF: MCS-8116678
9 PERFORMING ORGAN4IZATION NAME A*4D ADDRESS 10. PRO"RAW EL.EMENT. PRCJE_-T, TASK

AREA 6 WORK UNIT NU, MBERS

Department of Computet Science/ Yale University
Dunham Lab/ 10 Hillhouse Avenue NR 049-456/11-5-81
New Haven, CT 06520

)1. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE
NSF, Washington, D.C. 20550/ Office of Naval Auiiil 1QR3

Research, 800 N. Quincy, Arlington, VA 22217 13. NUMBER OFPAGES
14

14 MONITORING AGENCY NAME ADODRESS(If dillere.! from Controlling Offie) IS. SECURITY CLASS. (of this reporI)

Office of Naval Research Unclassified
800 N. Quincy
Arlington, VA 22217 15a. DECLASSI uCATION,'DOWNGRADING
ATTN: Dr. R.B. Grafton -

16. DISTRIBUTION STATEMENT (of this Reponr) • .

Approved for public release; distributed unlimited

17. DISTRIBUTION STATEMENT (of It abs.*act ontered In Block 20. if dltI nl*rnt bo Report)

I. SUPPLEMENT ARY NOTES

19. KEY WORDS (Continue on reverse side il necessar) and idenftI by block ntumbor)

priority queue, comparison, algorithm, sequential storage

28. ABSTRACT (Coni' ne on ,ee .r i: o,,.nco r) and identi y by block ..sl r)
7The Fishspear priority queue algorithm is presented and analyzed. Fishspear
makes fewer than 80% as many comparisons as heaps in the worst case, and its
relative performance is even better in many common situations. The code
itself embodies an unusual recursive structure which permits highly dynamic
and data-dependent execution. Fishspear also differs from heaps in that it
can be implemented efficiently using sequential storage such as stacks or
tapes, making it possibly attractive for implementation of very large queues
on yaged memory systems. (Details of the implementation are deferred to the
"uli aner- ,

D ,O. ,, 1473 / \1OI0iof I NOV as OSOLET

AECURITY CLASSIFICATION O9 tNiS PAGE (MOOl DP#& 6n10"d)

ramw -F" Accession For

NTIS GRA&I
me, DTIC TAB

Unannounced
Just if icatio

~. .. Dis-tribution/ _

* Availability Codes
Avail and/or

Dist Special

FISHSPEAR: A PRIORITY QUEUE ALGORITHM
(EXTENDED ABSTRACT)

Michael J. Fischer and Michael S. Paterson

YALEUIDCS/RR- 333

August, 1984

Fishspear: A Priority Queue Algorithm t
(EXTENDED ABSTRACT)

Michael J. Fischer Michael S. Paterson
Yale University University of Warwick

New Haven, Connecticut Coventry, England

Abstract comparisons. ' However, the time per insertion is fl(h),
making the algorithm unattractive in practice for all

The Fishspear priority queue algorithm is presented but very small queues.
and analyzed. Fishipear makes fewer than 80% as The heap III is a standard data structure for imple-
many comparisons as heaps in the worst case, and its menting priority queues which, like the ordered list,
relative performance is even better in many common uses O(log h) comparisons per operation, but the time
situations. The code itself embodies an unusual recur- per operation is linear in the number of comparisons
tive structure which permits highly dynamic and data- and so is also O(log h). Indeed, heaps are so common
dependent ezecution. Fishepear also differs from heaps as to be often identified with the abstract data type
in that it can be implemented efficiently using sequen- which they implement. So there is no confusion, by a
Sial storage such as stacks or tapes, making it possibly "heap" we mean a balanced binary tree with elements
attractive for implementation of very large queues on zi labelling each node i such that for any nodes i,j, if
paged memory systems. (Details of the implementation i is an ancestor of j, then z, 5 zj.
are deferred to the full paper.) One of the first applications of heaps was to an algo-

rithm for sorting n items using O(n log n) comparisons
151. Since fl(n logn) is a lower bound on the number of

1 Introduction comparisons for sorting, it follows that the amortized
cost' of a priority queue operation is n(logn) in the

A priority queue is an abstract data type consisting worst case, where n is the length of the operation se-
of a finite multiset P over a linearly ordered universe quence. Since heaps achieve this bound, they are in
D together with the following operations: some sense optimal.

Another intriguing property of heaps is that they ex-
MAKEEMPTY: Sets P:= 0. plait the ability to randomly access memory. The pat-

tern of memory accesses is dynamically determined by
EMPTY?: Returns true if P 0 0, false otherwise. the data, and there is no apparent way of implementing

heaps while maintaining the logarithmic amortized op-iN5lRr(z): Sets P :=i Pu (z. eration cost on more restrictive types of memory such

DELETE-MIN: Sets P := P - (y) and returns y, where as tapes or stacks.
Other data structures such as 2-3 trees, etc. canalso implement priority queues with similar complexity

Priority queues find application in discrete event simu- bounds, but all require random access storage. Thus,
lation, computational geometry, shortest path compu- priority queues have seemed to be an example of an
tations, and many other areas of computer science. abstract data type whose efficient implementation re-

A simple implementation of priority queues keeps the quired random access storage, and heaps are a simple
elements in an ordered list. Insertions are performed Implementation which seemed optimal.
by binary search and take [log hi comparisons to yield In this paper, we show that both intuitions are wrong
a list of size h, and the remaining operations take no 'Al lopuithu. ae taken to the bae 2 unless specified

tThis work was supported in part by the Office of Naval Re. otherwise.
search under Contract N00014-S2-K-0194, and by the National 2 The moeriesd cost of a sequence of operations is the total cost
Science Foundation under Grant MC-81 16478. of the sequence divided by the number of operations 131,141.

-I '

by presenting a new priority queue algorithm, Fisht- that occurs only rarely. Important differences are that
pear, which can be implemented with sequential stor- self-adjusting heaps support an additional operation,
age (using a fixed number of pushdown stacks), and MELD, which Fishspear does not, but Fishspear does
which is more efficient than heaps in two senses which not require random access storage. We do not know
are made more precise in the next section. First of the relative performance of the two algorithms on re-
all, it has similar amortized efficiency to heaps in the stricted classes of operation sequences.
worst case (O(Iog n) comparisons per queue operation),
but the coefficient of logn is actually less (1.2 versus
1.5) on sequences that start and end with the queue 2 Performance Bounds
empty. Secondly, the number of comparisons is 'little-
oh" of the number made by heaps for many classes of We now look in some detail at how to measure the
input sequences that are likely to occur in practice. performance of priority queue algorithms.
For example, if the queue builds to a certain size h The speed of sorting algorithms, for example, is often
and then receives alternately a very large number of expressed in terms of the worst-case or average num-
INSERT and DELETE-MIN operations, where the ele- bers of comparisons used in sorting n input elements.
ments to be inserted are drawn randomly with uniform They are useful expressions in that context since in
distribution from the unit interval, then the amortized many applications it is reasonable to assume that all
number of comparisons made by heaps for each such initial orderings of the inputs are about equally prob-
pair is about 3 log h (log h for the INSERT and 2 log h able and thus the parameter n provides an adequate
for the DELETE-MIN), whereas the amortized cost for description of the problem. We need the further as-
Fishspear is 0(1). (The queue at any time during this surance that the running time can be closely related
procedure contains the h largest elements ever inserted; to the number of comparisons made so that the more
hence, the size of the smallest of these approaches 1, so combinatorial analysis of the number of comparisons
the probability that a newly-inserted element will be yields results on program performance.
deleted by the very next operation also approaches 1. The case of priority queues presents no such sin-
Fishspear is particularly efficient in this situation.) gle natural parameter. The total number of INSERT

More generally, the number of comparisons required and DELETE-MIN operations performed is one possi-
by Fishspear depends only on the size of the "active" ble measure but in many applications the maximum
part of the queue, not on the overall size. In the above length of the queue attained is expected to be far less
example, the active part shrinks over time as the queue than the total number of elements inserted. We require
fills with larger and larger elements. This notion is a measure more sensitive to the demands made on the
quantified more precisely in the next section. priority queue.

Fishspear can be implemented using sequential stor- A performance measure we shall use is based on the

age such as tapes or stacks so that the overall run time sequence h = hl,..., h, denoting the size of the queue
is proportional to the total number of comparisons. 3 immediately after the insertion of each of n elements.'

Sequential storage algorithms such as Fishspear ae The sequence h is called the size profile for that run
attractive on typical paged computer systems since of the priority queue, where by run we shall mean
they tend to exhibit better paging performance than any sequence of priority queue operations for which
truly random-access algorithms such as heaps. This, DELETE-MIN is never applied to an empty queue and

together with the better behavior on common but re- the queue is initially and finally empty. For a run with
stricted classes of operation sequences, could make size profile h, the usual heap implementation may use

- Fishspear an attractive alternative to heaps in certain log h comparisons at the jth insertion and a corre-
. practical situations. We hope eventually to obtain ex- sponding 2 log h, comparisons for that deletion which

perimental data to support such a claim, subsequently first takes the queue from size h down to
The principal disadvantages of Fishspear are that it size h - 1. Hence an upper bound for the worst-case

is more complicated to implement than heaps, and the number of comparisons is approximately 3 log ha.
* overhead per comparison is greater. The compaisos for the naive list implementation are

Fishspear is similar to self-adjusting heaps 13I in that Y o Aj. As a lower bound, we have
the behavior depends dynamically on the data and the Theorem 1 The worst-cage number of compnrsson.

* cost per operation is low only in the amortized sense-- used bp ant/prorit/queue algorithm on runt with sue
individual operations can take time 11(n) even though u

4fHere the parameter a is the number of insertions, not the total
Detaibl are deferred to the full paper. length of the operation sequence.

2

p_1

profile h it at leat attained in the queue by element z. during the run.
While the usual heap implementations appear to de-
rive no advantage when m 4C h, our main theorem
shows that Fishspear requires at most

Proof: Consider all possible queue runs with size pro- C logmi +0(n)

file h and distinct input elements. The priority queue
algorithm is required to determine the unique correct
order of the output elements. Elements simultaneously comparisons on a run with n insertions (and n dele-
in the queue are output in order, so each possible way tions), where the coefficient c is less than 2.4.
of inserting a new element into the queue yields a dig- Less apparent is that the upper bound for Fishspear
tinct output sequence. There are hy- 1 + 1 = h, places holds even if 'm," is replaced by "ha7. Indeed, an
where the jth element can be inserted relative to the individual element can attain depth in the queue much
other elements in the queue at that time, and each of greater than the size of the queue when it was first
these yields a different output order, hence, the number inserted. Nevertheless, on the average, the m's are no

of runs which must be distinguished is fi nh. By the bigger than the h's.

usual information-theoretic argument, any algorithm Theorem 2 Consider a priority queue run with maz-
requires at least log i hij = f[log hi. binary com- depth profile m and size profile h. There ezist# a per-
parisons to distinguish among these runs. I mutation r cuck that m, < h.(,) for all i, 1 < i< n.

Fix a run and let z, be the i k element inserted into Proot Suppose there is some pair i,j with i < j and ,.
the queue. Now consider any element y in the queue z, - z , where z,, zj are adjacent in the total order-
at a particular time. It will be convenient to associate ing < of all the elements. We consider the effect of
with each such y a distinct i such that y = z,. If the interchanging zi and zt in the run.
zi are all distinct, the Association is obvious, but since If z, leaves the queue before zi enters, this inter-
we permit the queue to be a multiset, there may be change does not affect m, or my. If not, let M be
more than one way to make the correspondence. For the maximum depth attained by zi before z3 enters
definiteness, if the queue contains k copies of y at a and let M' and M" be the maximum depths attained
particular time r, we associate those copies with the k by z, and zj respectively after this time. Note that
largest elements of {i _< n, I y = zi }, where n, is the M' > M'. Before the interchange,
number of INSERT operations up to time T. Implicit in mi =imaxIM, M') and my M",
our use of the notation "z," is that i is associated with .M a
the element z,, so we say "z, is in the queue at time while after
r" to mean that z, is contained in the multiset at time mt = max(M, M") and m = At'.
r and is associated with index i.

We now define a strong total ordering < on the z,'s. We consider two cases and compare the pairs (yr,, in,)
z, -< z if either r, < z,, or z, = zy and i < j. By the before and after the interchange.
conventions of the preceding paragraph, it is clear that I. M :_ MI.
if z, -< z, and z,, z. are simultaneously in the queue, Before: (M', M"). After: (max(AI. Mt}. M').
then z, will appear as output before z. . 2. M' 5 M.

The depth of z, at a time when it is in the queue is Before: (Mt, Mt"). After. (XIl, M').
one plus the number of elements Z, < z, in the queue at
that time. There are several applications where most In each case the pair, regarded as a multiset, increases %
of the elements inserted attain only a relatively shal- in value in one element or remains the same.
low depth during their residence in the queue. An ex- We can repeat this process wherever there is a pair of
ample is when the input elements are drawn from a elements with adjacent values where the larger value is
uniform distribution and the profile remains at an ap- inserted first. The final result will be a "FIFO" run in
proximately constant level for long periods. We would which the elements are inserted in order of increasing
like to take advantage of such behavior with an al- value. For such a run, m, = h, since the initial depth of
gorithm which does not disturb the deeper elements any element, which will be h, here, cannot be increased
unnecessarily, by subsequent insertions. Since each interchange on

For a more refined analysis of complexities, we may the way to constructing the *FIFO" run could only
delne the m.depth profile m for a run as the se- increase the values of Imi, i 2 , ..) as a multiset, the
quence MI, M2 ... ,. where my is the maximum depth mult follows at once. I

3

3 The Fishspear Algorithm DELETE-SHARP: Assumes U is non-empty. Deletes
and returns the leftmost (i.e. smallest) element

The algorithm which we present in Section 3.2 is an of U.
instance of a general class of (non-deterministic) algo-
rithms which all operate on the same data structure In addition to the above, we assume the existence of

called a nshspear. The correctness of such algorithms basic operations for testing and comparing the lengths

is fairly easy to see. What is not obvious is that there of the various segments.

is a deterministic rule for making choices that leads to The priority queue operation EMPTY? is imple- :-.
good behavior. mented by testing if all of the fisbspear segments are

empty, and MAKEEMPTY can be defined in terms of
EMPTY? and DELETE-MIN. To do INSERT(z), one

3.1 Fishapear Data Structure merely performs BARB _CREATE({Z}) on the fishspear
The Fishspear data structure represents a priority data structure. To do DELETE.MIN, an application of

queue as a collection of sorted lists called segments. DELETE-SHARP suffices, provided that U i non-empty.
The collection is partially ordered by the rule that The following algorithm is a lazy approach to making

U :5 V if x 5 fyfor every z E U and y E V. Ak- sureUisnon-empty:
barbed flh#apear consists of (possibly empty) segments
U, Wk,..., W, and V,,...,V. Segments U, Wk,..... W, IfU is empty then begin
are linearly ordered and form the shaft of the spear, while k > I and Wk is empty do BARB.MERGE;
that is, U :5 Wk :5 Wk- 5: ... :5 Wi. Segments f Wk is non-empty
Vk,... , are the barbs of the spear and satisfy U < then PMERGE
Vt, U _< V, and W , < V for all i,j with k -ej > i > .else TOP-CAT
A spear is illustrated in Figure 1. end

U Wk W1._. W, Performing this code before every DELETE-MIN oper-

____________________ation will reslt in a correct, albeit inefficient, priority

queue algorithm.
It is easy to construct examples which cause the

above code to make U(n 2) comparisons on an n-
element input sequence. For example, such behavior

Figure 1: A k-barbed fishspea. results on any sequence of n insertions followed by
n DELETE.MIN operations. The n insertions produce

Five primitive operations can be performed on the an n-fshpear with one element in each barb and an
data structure: empty shaft. At the time of the first DELETE-MIN, the

above code combines all n barbs in a series of unbal-
PMERGE: Assumes Wk is non-empty. Performs a *par- anced merges requiring t(n 2) comparisons. . -

tial merge" of V with Wk by comparing the first
element in Wk with the first element in Vk and
appending the smaller one to U. (If Vk is empty, 3.2 A Particular Algorithm
the first element of Wk is appended to U.) The strategy of our algorithm is to selectively per-

BARBMERGE: Assumes I > 1 and W,, is empty. form PMERGE, BARB-MERGE and TOP-CAT operationsMerges V, into Vk... and sets k i- 1. The before each priority queue operation so as to maintain
result is a (Ic - 1)-barbed nishipea. a kind of balance on the sizes of the various segments

of the fishspear. Exactly what kind of balance our
TOP-CAT: Assumes k = I and W, is empty. Appends algorithm actually achieves is unclear. Through an in-

V to U and sets k := 0. The result is a O. volved analysis, we provide a good upper bound on the
barbed fishspear (i.e. the entire queue is sorted total number of comparisons, but we have been unable
and resides in U). to obtain a simple inductive condition on the fishs-

pear which our algorithm preserves and from which
BARBCREATE(X): Creates a new segment Vk+l ini- our bound follows.

tialized to X. Sets Wk+i := U, U := NIL, and Because of the stack-like quality of the fishspear, it
k := k + 1. The result is a (k + l)-barbed fishs- is natural to present our algorithm recursively. How-
pear. ever, it is not the queue operations such as INSERT and

4

DELETE-MIN that are defined recursively but rather a parameter. We are able to prove the best worst-case
process Q which runs autonomously, alternately mas- bounds for fi = 0.7034..., but any value between 0
saging the fishspear and processing priority-queue op- and I yields a correct algorithm. In this program, and
erations. In other words, we regard Q as a black box elsewhere in this paper, we follow the convention that
to which we send priority queue operations to be per- segments and sets are named by upper case letters and
formed and which sends answers back to us in response their cardinalities are denoted by the corresponding
to those operations. Q is separate from the "user" pro- lower case letter. Thus, u denotes the length of U, etc.
cess which is issuing the priority queue operations, al-
though Q could be implemented as a coroutine just as
well. This view is illustrated in Figure 2. Procedure S:

1. Ua := U
queue operations 2. BASE

User 3. while wk > 0 do
4. if vk _> u or u _> Ou then PMERGE

returned values 5. else (vk < u} begin
6. S; BARB-MERGE

Figure 2: Process structure of the Fishspear algorithm. 7. end

We assume two synchronized primitives for interpro- Figure 3: The recursive procedure S.
cess communication, SEND(m) and RECEIVE, where m F
is a message. (Cf. CSP 121.) A process executing The actual processing of messages takes place in the
RECEIVE blocks until the other process is ready to exe- routine BASE, which is given in Figure 4. When BASE
cute SEND(m) for some m, at which time the RECEIVE is called, U is assumed to be non-empty. BASE pro-

operation returns m as its value and both processs cesses messages until either a new element is inserted
continue. Similarly, a process executing SEND(m) is
forced to wait until the other process is ready to exe- BA e calls r j ef etunithe

cuteBASE calls BARBCREATE just before returning, so the

Messages are elements of D U (dcl', .tyT) u resulting flshspear is one longer than at the time of call.

('yes', 'no'). A message in D denotes an element to
be inserted, if sent by the user process, or the mini- Procedure BASE:
mum element just deleted from the queue, if sent by 1. repeat
Q. Messages 'del' and 'empty?' are requests by the user 2. z RECEIVE
process to perform a DELETE.MIN or EMPTY? opera- 3. if z = 'empty?' then SEND 'no'
tion on the priority queue. 'yes' and 'no' are responses 4. else if z = 'del' then SEND DELETE SHARP
by Q to the 'empty?' request. We assume the user
process performs RECEIVE immediately following each 5. until z 6 D or u = 0
SEND('empty?') and SEND('el') request in order to re- 6. if z e D then BARBCREATE((z))

SEN('dl')7. else BARB..CREATE(O)ceive the response.
Q maintains two pieces of global data-an integer k

and a k-fishspear stored in variables U, V1, and W,, Figure 4: Code to process queue operations.
j > 0, as described above. All of the manipulations of
this data are performed by the five fishspear primitives, Finally, we give the top-level code for process Q
which are invoked by Q. which runs the priority queue algorithm by repeatedly

The heart of the algorithm is the recursive procedure calling S. Since S can only be called when the fishspear
S. When S is called, U is assumed to be non-empty. is non-empty, Q itself reads and processes messages
S performs one or more RECEIVE operations, carries whenever the queue is empty.
out the actions specified by the messages received, re-
sponds to each 'del' or 'empty?' request by issuing an
a SEND with the answer, and modifies the fishspear 4 Complexity Analysis
to reflect the changes in the queue contents. When S
eventually returns, the length k of the fishspear is one We present an upper bound on the worst-case num-
greater than when it was called, and Wk =0. ber of comparisons, Comp(m), made by fishspear on

The code for S is given in Figure 3. 0 is a tuning an input sequence with max-depth profile m.

5*

* . . -- ,. •

and within the BARB-MERGE of line 6 of S. PMERGE

Process Q: compares the first element of Vk with the first element
1. k:= 0; U:= of Wk and appends the smaller (higher priority) to U.
2. repeat forever Thus, that comparison is of Type I if the smaller ele-

* 3. If u = 0 then begin meat came from Vk and is of Type ! if the smaller
4. RE:= RCEIVE element came from Wk. All comparisons made by
S. if z = *empty?* then SEND 'yes' BARB-MERGE are of Type I!, since no elements enter
6. else if z = 'del then error the shaft.
7. else BARB.-CREATE({Z))
8. end Lema 1 The algorithm makes at most n Type I
9. else begin comparisons.

10. S
11. end Proof: Once an element enters the shaft, it remains
12. TOP-CAT there until eventually deleted from the queue. Hence,

at most n Type I comparisons are made in the course
of the algorithm since each element enters the shaft

Figure 5: The top-level driver, only once. I

Theorem 3 For all 6, 0 < 0 < 1, there ezist c, C' 4.2 The Progress Lemma
such that for all runs with n insertions and max-depth
profile m, We now take a more detailed look at the recursive

structure of the algorithm and the actions which it per-
Comp(m) _5 c logmi + c'n. forms. We first introduce some notation to allow us to

=1 talk about the way the flshspear changes over time. At
In particular, for = .7034, we map take c - 2.4. any time r, let U, be the set of elements in segment U,

(Further details on the interdependence of c, c' and P let V, be the set of elements in segment Vk, let V: be
are given in the analysis below.) the set of elements in segment Vk-, assuming k > I

at that time, and let W, be the set of elements in Wk.
The proof consists of several parts. First, we clas- These definitions depend on the current value of k, so

sify each comparison made by the algorithm as being of in particular, V, always refers to the top barb of the
Type I or Type II, and we observe that at most n Type Ashspear, and V,' always refers to the second-from-top
I comparisons are made in the course of the algorithm. barb. As usual, the corresponding lower case letter
We analyze the number of Type I! comparisons by set- refers to the cardinaity of the set, so u, = IU,1, etc.
ting up a toll "economy" in which tolls are charged to Now consider a single instance of a call on S and the
queue elements at various points in the algorithm and computation that takes place between the time o of the
are used to pay for comparisons. The tolls collected call and the time w of the return. Let a' be the time
are sufficient to pay for all the Type 1I comparisons, just before line 3 of S is executed for the first time, and
and each element z, is charged only clogmi +c" tolls, let r be a time at which control is between lines of S
Summing over all the elements gives such that a' LC r _ w. We defne the following sets of

Type II comparisons !5 tolls collected elements:
<c lge, + n. IN, = set of elements inserted into the

- queue after time a and still present "

The theorem then follows by summing the upper in the queue at timer;
bounds for the two types of comparisons and taking OUT, = set of elements present in the queue
c' = c" + I. at time a but gone from tlae queue

by time r;
4.1 Comparison Types U,0 d U, n U, the set of old elements in

A comparison which results in an element first e.- U at timer;
tering the shaft of the Ashapear is of Type 1; all other U I" = U, n IN,, the set of new elements
comparisons are Type !!. An examination of the algo- in U at time r.
rithm shows that there are only two places in which ele- We often omit the subscript r when r is clear from
meats are compared: within the PMERGE of ine 4 of S, context. The relationships that exist among these sets

6..

P' "I

S.. .. ".

are given in Figure 6 and are easily proved by induction and these are all new elements inserted during the re-
on r, for r between a' and w. cursive call. Hence, lines 6 preserves the truth of the

conclusion of the lemma. The lemma then follows by

U induction. I

W JThe following is a direct consequence of the Progress
OUT U old U *7 V Lemma.

U0 IN Lemma 3 For any ezecution of S, either

Figure 6: Relations among the basic sets after time a'. in, . oitt > uL - 1

or

Lemma 2 (Progress Lemma) Let r be any time, a' < in, Ou. - 1.

r < w, such that the test u > Oua in line 4 of S has Prook There are two cases, depending on whether the
never evaluated to 'true' anytime during the interval test u fu, in line 4 of S ever evaluated to 'true'.
from a' to r, and control is between lines of S. Then Cs e 4 oh S ever evaluated to true' •Case 1: The test never evaluated to 'true'. Then by

S> t - 1.Lemma2, v 2t uld -1. Also, w,, = 0 since the 'while'

loop of line 3 terminated. Thus, using Figure 6. we see
Proof: To begin with, observe that if the condition that in,, = u,ew + v,, and out,, = U. - uo ld. Hence, . -

a ? Ju. once becomes true, then it remains true for
the duration of that execution of S, for as long as it in,, + out,, > u. + u, *w - I
is true, the 'then' branch of the condition in line 4 is ? u. - 1.
always taken, and PMERGE does not change u. nor
decrease u. Case 2: The test first evaluated 'true' in an execution

We proceed to prove the lemma. At time r = a', of line 4 which began at time r. Then by Lemma 2,
U is empty, so u~ld - 0 and the lemma holds. Subse- v, 2_ utd - 1. From time r to w, only PMERGE's are
quently, the only places where U or V are modified are done, and no elements are deleted from the queue, so
in lines 4 and 6 of S. We consider them in turn, ..

Suppose r is a time just after the PMERGE in line 4 in,, u it,, + v,, = u" + v,.
of S has been performed, and suppose the conditions of
the lemma are satisfied at time r. Then u, < Ou., so Hence,

v _> u ? u"1 ld just before the PMERGE. The PMERGE i+ old U

moves one element from either V or Wk into U. If it i -l, un e + it l
- 1 - u, - 1.-

moves an element from Vk, then v decreases by 1 but Since the test was about to evaluate 'true', we have
uotOd remains unchanged (since Vk consists entirely of
new elements). If it moves an element from Wk, then u >uQ, so
u old increases by 1 but v remains unchanged. In either in,, 6 u. - 1.

case, v ? uc ld - 1 afterwards. I
Now consider the effect of line 6 on U and V. The re-

cursive call on S modifies U and adds a new barb to the 4.3 The Toll Economy
fishspear. The call on BARB-MERGE then merges the 43 Te olEc-m

top two barbs together, leaving the fishspear with the We now describe our method of analyzing the num-
same number of segments as it had before the recursive ber of Type II comparisons. We associate with each
call. Line 6 can only decrease (or leave unchanged) the element inserted into the queue two infinite sets of to-
size of U *1, for the segment U immediately after the kens, the in-tokens and the out-tokens. The tokens in
recursive call consists entirely of elements that were each set are numbered sequentially beginning with 1.

' in U just before the call together with new elements In addition, each element has two base-tokens. The
(that is, elements inserted into the queue during the value of in-token (out-token) number d is ti/d (to/d),
recursive call), and BARB..MERG does not affect U. and the value of the base token is tn, where ti, to, and
Line 6 can only increase (or leave unchanged) the size ts are positive constants to be specified later. They
of V, for its overall effect is to add to V those elements will depend on a parameter 6 which can be chosen a,-
which the recursive call on S placed in the new barb, bitrarily from the open interval (0, 0/2). -

7

We collect tolls by removing tokens from elements Inductively, suppose o is a string of natural numbers,
that are or were in the queue. The tolls collected T is and suppose S, denotes an execution of S which per-
the total value of all tokens so taken. We ensure that forms line 6 a total of r times. Then So, denotes the
any in-tokens and out-tokens taken satisfy the follow- execution of S which results from the ill execution of
ing: line 6 by S, 1 !5 i < r. So, is undefined if i > r or if

S, is undefined. Also, Se is undefined, where e denotes
Tolling Rule The number p of the high- the empty string.

est numbered token collected from any Let a(a) and w(a) denote the endpoints of the time
element z, satisfies p < (mi + 1)/b. interval spanned by the execution So. The interval of

We remark that for any set X of elements simultane- S. contains in the interval of S, if a is a prefix of a',

ously present in the queue and still possessing token and the intervals are disjoint if neither a nor a' is a

p, the Tolling Rule lets us collect token p from all but prefix of the other.

[6pJ - I eements of X, for those elements all have S, is eligible to accept a token t if the following con-

depth at least LbpJ > 6P - I. ditions hold:

Lemma 4 4ny manner of collecting tolls according to e t is a base token of element zi, and rf was in-
the Tolling Rule results in serted or deleted during the interval spanned by

S'.

T < 2tB + 0t, + to) [In mi +, (In 2e. n] t is in-token number p of element x., r, was in-
- serted into the queue during the interval spanned

by 5,, and p < min{uo(.), (in, + 1)16).
where In z denotes the natural logarithm of z.

. t is out-token number p of element x,, r,
Proof: Since the largest token allowed by the tolling was deleted from the queue during the interval
rule is at most L(mi + 1)/61, we have spanned by S., and p < min(u,(,),(m, + l)/6).

+ t)nL m+)/6J We associate t with the lowest level execution which ..
T <_ 2tB + (ti + to) F is eligible to accept it, that is, among the executions

i=1 d=1 S, eligible to accept t, we associate t with the one for
t _ .+, _) which the length of a is maximal. That this is unique

< 2 t + (ti + to) I follows from the fact that two distinct strings of the
same length describe non-overlapping executions. If t

I or that v tolls are taken by S.,, where u is the value ofsince ! < is asoiae wit 5,, we sa ht scolcedbJ - t as defined above.

Looked at from another perspective, the following
2t+ (t + to)n 2me tokens are collected by S, if permitted by the Tolling

B + Rule:

[a /2e\ 1 A base token from whatever element was inserted
= 2t + (t +to) Int,) T .n] or deleted from the queue by the execution of

L\6= 1 / BASE in line 2 of S,.

In-tokens u(.,,) through u,(.,) - 1 of element z
if x was inserted in the queue during the it' ex-

Fix a run of the queue. We will associate each to- ecution of line 6 of S,.
ken collected with a particular execution of S. Before
describing exactly how this is done, we introduce a no- * Out-tokens u.(gi) through ua(,) - 1 of element
tation for naming such executions. z if z was deleted from the queue during the ith

We define S, inductively for certain strings a of pos- execution of line 6 of S.
itive integers. Let i _ 1. S, denotes the execution of
S which results from the s1 h execution of line 10 of the This characterization holds because we assume 0 < 1,
top-level program Q, assuming Q executes line 10 at so the test in line 4 of S then ensures that uo(.) <
least i times in the run, and otherwise Sd is undefined. u.(,}. Thus, if p _1 no(.,), it follows inductively that

8

I

SS,j, is not eligible to collect any token number p for number p is collected from all but 16bp - I of
any string -. the elements in INj) for a total value of at least

In the remainder of this section, we assume that tt(in(,)-(6p-1))/p. Summing overj and p gives
6,8 E (0,1), 6 < 0/2, and that t',to,t,tO,tB are a total value of

" positive constants which satisfy the following.

t;~ax{ 2+ 1 }72(a) = ti(in(,) - (6 p - O)F (7)• t', > max '6(1 -In f), - In (1- 1~,<-)

t;q-(t'q+tt'(1 -q))lnq-2-q 0 (2) 3. Let u(,) <p< u, - I. By the remark following

holds if 0 < q < the Tolling Rule, in-token p is collected from all
but L6pJ - 1 of the elements in IN(.) U IN, for

6 (+ to) (3)a total value of at least

S< to (1 6 (ti + to)) Ts() = = ti(maxlin(+)'in')}- (P- 1)).!
t >t 0-).(4) p

4. Let u(.) _5 p < uo - 1. By the remark following
Let T(o,) be the total value of all tokens collected by the Tolling Rule, out-token p is collected from all

S,. We now derive a lower bound on T(o). but 16pJ - I of the elements in OUT, for a total
value of at leastLemma 5 (Tolls Lemma). Let S, be an execution of

S, and let ar = a(o) and w = w(o). Then ,.-iT4(or) -- E to (out,, (bp - 1))p 1 9

T(o) 2_ 2u. + u,,. =V) p

Proof: Consider the times (i), i = 1,2,... imme- Thus, T(o) k 4 Ti().
diately preceding the successive executions of line 6
during the while-loop of S. Let p, = a(al) and let By Lemma 2 and Figure 6, in() > u(1) - 1. Since

S= aui) where i is the least number such that also u{) > p in the summation, Equation 7 yields

S,, is defined and u,(,,) > u,,. Finally, let a be the
largest index for which p, is defined. As a notational 1
convenience, we write (j) for pT. = 6 , - ()

Each of IN(,), IN.,, and OUT, are sets of elements
. which are simultaneously in the queue-the elements Using the fact that

of IN(,) are all present at time py, the elements of IN,.,
are all there at time w, and the elements of OUT, were 1
all in the queue at time a. By the remark following the u(j) - -

Tolling Rule, we can collect in-token number p from all (= -1),P
but [6pJ - 1 of the elements in [No) or IN,. Similarly,
we can collect out-token p from all but L6pJ - I of the we in turn get

!.-. elements of OUT,,.
We now total up the tokens we know are collected T72(> z_,(lU(i))

.*- by S,, thereby giving a lower bound on T(o).

1. At least one base token is collected by S, since - t1(I -6)(u() -1) (11)
the call on BASE in line 2 of S causes at least one
element to be inserted or deleted. It has value By Lemma 2 and Figure 6, in(.) ? u(.) - 1, and

by Lemma 3, we have Ou. < in,, + out, + 1 :5
T10) = te. (6) max{u(.), in, + 1) + out. + 1. Using the fact that

2. Let l!j< andletu(-,) <p_5 (.)- 1. (For
technical convenience, we take u(o) = 1.) By > in a (12)
the remark following the Tolling Rule, in-token p

o-..

Equation 8 then yields > 2u. + vi.,

u.-1 1 Let

T3(u) . tt(max{in(.),in,} - (6u. - 1)) T - I n I
P=S. p U s nw + 1out,

!-), ' = - and =
U. U. UO

> [tj max(u{.), inw, + 1) define- ~and define.:-

-tj (max~u(.), i, + 1)) F = t'p - [t max(p, q} + t'or In p - 2 - q.

-t1- (out,, + In) . (13) It suffices to show F 0 0 since in,, + 12! v,,.
Up() We make use of two constraints on p, q, r. First of

* Also, Equation 9 yields an, the test in line 4 of S ensures that u(.) < #u., so
p < #. Secondly, Lemma 3 implies that either q + r >

T4(a) to(out--(u 0-1)) orq > .
p Before proceeding, consider the partial derivative

when p < q:

+ [to(out + I) OF t
6 T P

-to (max{u(.), in,, + I}=

-to (out,, + 1) (14) < 0.

Combining Equations 13 and 14 with 3 and 4, we get This shows that F decreases as p increases to q.
We now consider three cases depending on how q

TAO) + T4() relates to p and .

r 6 (t + to)\ Case 1: q 5p < . Then q+r>1, so r2:1 -q~ 1-p.
I I- + to) maxr(uD),in,, + I} Also, p < I since 6 < 1, so lap < 0. Hence,

-.. 0 -(t+to)\ 1 o t +)] In to) F fi tp-jtp+t'or~lnp-2-q
+ (s) > tp-[tp+t'o(l-p)lnp-2-p.

i > [t max(u(.,in fl, + 1)

(By Equation 2, F >_ 0 as desired.
+ t'o(out" .+l} in u(15) Case 2: p < q < 0. Again r _ 1 - q. Since the partial

u(s) derivative of F with respect to p is negative, we can

From Equation 3, we have t,(l - 6) > t. Thus, replace p by q to get
adding together Equations 6, 11, and 15, and using
Equation 5, we get F = t'p-t q+t'0 rjlnp-2-q

T~~o) >_ t;q - tjq + to(l - q)lnq - 2-q. .;
T, %

te + t(l - 6)(u(,) - 1) Again, Equation 2 gives F 2! 0 as desired.
+ maxfU(s), in,., +1)+ toOUt,,+i)j la U..._e Came 3: p < q. Again the partial derivative of F

•U(,) with respect to p is negative, so we can replace p by
t~u(.) +jt; max(U(.),i., + } and r by 0 to get

+ t'outa.,In-. (16) F

" 4a (ut,)ln We now consider two subcases.

10

/o- •...-

Subcase 1: D _ -2 In 0. Then by Equation 1 we have the straightforward way. Hence, the net gain of all of
t, -1/In O 2/P. Hence, the executions of line 6 is non-negative.

We now consider the PMERGE in line 4. At most
F ? it' - 21 - qft In 0 + 11 U, Type II comparisons are made, since each such

[(2) 21 q /-i\ 1 comparison removes an element from Wk, and Wkiui-
>- Rq~2 n +tially (just after line 2) has size u.. By Lemma 5,

T() > 2u. + v,,. Hence, gain(o) ? u. + v, as desired.=0. | ..

Subcase 2: < -21n P. Then by Equation 1 we have Putting all this together gives us

> _ 2 + 0 Lemma 7 The total num6er of Type 11 compari8ons
(- in) made by Fihapear on a run tith n invertions and max-

Hence, depth profile r i at most

-'~n+ :5 (,)I (- In) V3 + (t, +to) Into, + In 2e n.

21nP+- n (18) Prof" The run can be partitioned into segments of
operations which are processed directly by Q and seg-

< 0. meats which are processed by a top-level call on S. The

Thus, using the assumption that 9 _ q, Equations 17 former require no comparisons. That the total number
and 18 give required for the latter satisfies the bound in the lemma

is an immediate consequence of Lemmas 4 and 6.1

- (1-n ') JI [i(n -)J To complete the proof of Theorem 3, it is necessary
to analyze the constants. First, note that for any 6, 0 E

= 0. (0, 1) with 6 < 012, there exist values of tj, to, t1 , to, t8
Thus, in all three cases, F ? 0, completing the proof which satisfy Equations 1-5. Use Equation I to define

of the iemma. tj. The left hand side of Equation 2 as a function

of q is bounded from below over the interval (0, ,--
We now relate the tolls collected to the comparisons and as a function of to', it is linear with a positive

made by the algorithm, coefficient that is bounded away from zero. It follows
Let gain(o') = T(a) - type,,(a), where type,,(o) is that Equatioln 2 is satisfied for sufficiently large to,.

the number of Type I comparisons made by S, but Similarly, Equations 3 and 4 can be satisfied by taking
excluding comparisons made by the subrecursive calls. t1 = to sufficiently large, for then 26/P < 1 ad the

right hand sides are linear in tj = to with positive
Lenma 6 Let S, be an ezecution of S, and let a = coefficient. Finally, Equation 5 can be used to define
a(o') and w = w(u). Then t3. The constant c of Theorem 3 is given by

gain(a _? ue + v,.. c = (t + to)-In 2, (19)

Proof- Proof is by reverse induction on the length of and one can take
a, starting with the longest words a for which S. is 2e
defined. ' =2t8 +1 +(t,+to)-ln •'

Suppose S. is an execution of S and the lemma has 6

been proved for all executions S.- with a a proper We get our best bounds by choosing 0 - -2 In =
prefix of a". Consider the ilk execution of line 6 of .7034.... Plugging in to Equation I yields t =
S (which begins at time a(ui)). The test in line 4 2.843.... Calculus together with numerical evalma-

-- ensures vo(ed) < u.(,). By induction, galn(ai) tion shows that to0 = .5674... satisfies Equation 2,
u,(v, + v,,t). Hence, gain(oa) a %(,) + v,,pj). The and equality holds (to within the limits of our preci-
number of comparisons made by BARB.MERGE in line 6 Slon) for q = .141 (The function of Equation 2
is at most v.(,) + v,,(.), since it simply merges to- over the interval (0, 0) Is shown in Figure 7.) Thus,
gether the two segmentsVw(, j V,(,) and V,(.j) in el + tgo = 3.410.... By choosing 6 sufficiently close to

t
°
. o..1

0, we can make il + to arbitrarily close to 3.410.... Bibliography
Finally, plugging into Equation 19 shows that the con-
stant c of Theorem 3 can be chosen arbitrarily close
to 111 AHO, A. V., HOPCROFT, J. E., AND ULL-

In(2) x 3.410... = 2.363.... MAN, J. D. The Deign and Analysiv of Com-
puter Algorithm#, Addison-Wesley, Reading, MA,

In particular, c = 2.4 works. 1974.

0.30 121 HOARE, C. A. R. Communicating sequential
processes. Comm. ACM 21, 8 (1978), 666-677.

0.25 131 SLEATOR, D. D., AND TARJAN, R. E.
0.20 Self-adjusting binary trees. In Proc. 15th ACM

SIGA CT Sympos. on Theory of Computing (April

0.t5 1983), 235-245.

0.10 141 SLEATOR, D. D., AND TARJAN, R. E. Amor-
tized efficiency of list update rules. In Proc. 16th
ACM SIGA CT Sympo.. on Theory of Computing

0.05 (April-May 1984), 488-492.

0.00 0.2 0.4 0.6 0.8 1.0 151 WILLIAMS, J. W. J. Algorithm 232: Heapsort.
Velum at q Comm. ACM 7, 6 (1964), 347-348.

Figure 7: The function t' q - (t'q + t'0 (1 - q)) In q - 2- q
for t' = 2.844 and t'0 = 0.5675.

Acknowledgement

We are grateful to T. C. Brown of the University of
Warwick for drawing our attention to a bug in a pre-
vious version of the algorithm and to Neil lImmernam

of Yale University for helpful discussions.

12

i-- -, j ,. , , . '-, -" - - - - . .. - ; . . -•

DISTRIBUTION LIST

Office of Naval Research Contract N00014-82-K-0154

Michael J. Fischer, Principal Investigator

Defense Technical Information Center Naval Ocean Systems Center
Building 5, Cameron Station Advanced Software Technology Division
Alexandria, VA 22314 Code 5200
(12 copies) San Diego, CA 92152

(1 copy)

Office of Naval Research Mr. E.H. Gleissner
800 North Quincy Street Naval Ship Research and Development Center
Arlington, VA 22217 Computation and Mathematics Department

Bethesda, MD 20084
Dr. R.B. Grafton, Scientific (I copy)
Officer (1 copy) .

Information Systems Program (437) Captain Grace M. Hopper
(2 copies) Naval Data Automation Command
Code 200 (1 copy) Washington Navy Yard
Code 455 (1 copy) Building 166

copy) Washington, D.C. 20374
Code 458 (1 y(1 copy)

Office of Naval Research Defense Advance Research Projects Agency
Branch Office, Pasadena ATTN: Program Management/MIS
1030 East Green Street 1400 Wilson Boulevard
Pasadena, CA 91106 Arlington, VA 22209
(1 copy) (3 copies)

Naval Research Laboratory
Technical Information Division

Code 2627
Washington, D.C. 20375
(6 copies)

* Office of Naval Research
Resident Representative

715 Broadway, 5th Floor
* - New York, NY 10003

(1 copy)

* "Dr. A.L. Slafkosky
Scientific Advisor

--Commandant of the Marine Corps
Code RD-i
Washington, D.C. 20380

,* (1 copy)

* .'. . .

4,z
A4

sk
;11

> 4 ~ t ~ ~ ,, 'q7 i% k r + t t 4;.V
*1 i

lp N ' i 47t '6$? 4 *la 2 ~ #4Ow.

A.* "s v,
4

4

. ;4A. '

)
of~LLN A

AUL1414~ '

